How do you simplify #f(theta)=sin4theta-2tan2theta+5csc2theta# to trigonometric functions of a unit #theta#?

1 Answer

#f(theta)=2(2 sin theta*cos theta)(cos^2 theta-sin^2 theta)-(4 tan theta)/(1-tan^2 theta)+5/(2 sin theta cos theta)#

Explanation:

To simplify the equation to functions of unit #theta#

Use the following

#sin 2theta=2*sin theta cos theta#

#cos 2theta=cos^2 theta-sin^2 theta#

#tan 2theta=(2*tan theta)/(1-tan^2 theta)#

#csc 2theta=1/(sin 2theta)=1/(2 sin theta cos theta)#

Start with the given

#f(theta)=sin 4theta-2*tan 2theta+ 5 csc 2theta#

#f(theta)=2*sin 2theta *cos 2theta-2((2*tan theta)/(1-tan^2 theta))+5(1/(2 sin theta cos theta))#

#f(theta)=2(2 sin theta*cos theta)(cos^2 theta-sin^2 theta)-(4 tan theta)/(1-tan^2 theta)+5/(2 sin theta cos theta)#

I hope this one helps . It is already expressed in unit #theta#.

Have a nice day ...from the Philippines!