We'll use the following two identities:
sin(A+-B)=sinAcosB+-cosAsinBsin(A±B)=sinAcosB±cosAsinB
cos(A+-B)=cosAcosB∓sinAsinBcos(A±B)=cosAcosB∓sinAsinB
sin(4theta)=2sin(2theta)cos(2theta)=2(2sin(theta)cos(theta))(cos^2(theta)-sin^2(theta))=4sin(theta)cos^3(theta)-4sin^3(theta)cos(theta)sin(4θ)=2sin(2θ)cos(2θ)=2(2sin(θ)cos(θ))(cos2(θ)−sin2(θ))=4sin(θ)cos3(θ)−4sin3(θ)cos(θ)
cos(6theta)=cos^2(3theta)-sin^2(3theta)cos(6θ)=cos2(3θ)−sin2(3θ)
=(cos(2theta)cos(theta)-sin(2theta)sin(theta))^2-(sin(2theta)cos(theta)+cos(2theta)sin(theta))^2=(cos(2θ)cos(θ)−sin(2θ)sin(θ))2−(sin(2θ)cos(θ)+cos(2θ)sin(θ))2
=(cos(theta)(cos^2(theta)-sin^2(theta))-2sin^2(theta)cos(theta))^2-(2cos^2(theta)sin(theta)+sin(theta)(cos^2(theta)-sin^2(theta))^2=(cos(θ)(cos2(θ)−sin2(θ))−2sin2(θ)cos(θ))2−(2cos2(θ)sin(θ)+sin(θ)(cos2(θ)−sin2(θ))2
=(cos^3(theta)-sin^2(theta)cos(theta)-2sin^2(theta)cos(theta))^2-(2cos^2(theta)sin(theta)+cos^2(theta)sin(theta)-sin^3(theta))^2=(cos3(θ)−sin2(θ)cos(θ)−2sin2(θ)cos(θ))2−(2cos2(θ)sin(θ)+cos2(θ)sin(θ)−sin3(θ))2
=(cos^3(theta)-3sin^2(theta)cos(theta))^2-(3cos^2(theta)sin(theta)-sin^3(theta))^2=(cos3(θ)−3sin2(θ)cos(θ))2−(3cos2(θ)sin(θ)−sin3(θ))2
=cos^6(theta)-6sin^2(theta)cos^4(theta)+9sin^4(theta)cos^2(theta)-9sin^2(theta)cos^4(theta)+6sin^4(theta)cos^2(theta)-sin^6(theta)=cos6(θ)−6sin2(θ)cos4(θ)+9sin4(θ)cos2(θ)−9sin2(θ)cos4(θ)+6sin4(θ)cos2(θ)−sin6(θ)
sin(4theta)-cos(6theta)=4sin(theta)cos^3(theta)-4sin^3(theta)cos(theta)-(cos^6(theta)-6sin^2(theta)cos^4(theta)+9sin^4(theta)cos^2(theta)-9sin^2(theta)cos^4(theta)+6sin^4(theta)cos^2(theta)-sin^6(theta))
=4sin(theta)cos^3(theta)-4sin^3(theta)cos(theta)-cos^6(theta)+6sin^2(theta)cos^4(theta)-9sin^4(theta)cos^2(theta)+9sin^2(theta)cos^4(theta)-6sin^4(theta)cos^2(theta)+sin^6(theta)
=sin(theta)^6-15cos(theta)^2sin(theta)^4-4cos(theta)sin(theta)^3+15cos(theta)^4sin(theta)^2+4cos(theta)^3sin(theta)-cos(theta)^6