How do you simplify n^6 * (n^-2)^5?

2 Answers
Nov 4, 2015

n^6*(n^-2)^5=1/n^4

Explanation:

n^6*(n^-2)^5

Simplify (n^-2)^5 by applying the exponent rule (a^m)^n=a^(m*n).

n^6*n^(-2*5)=

n^6*n^-10

Simplify by applying the exponent rule a^m*a^n=a^(m+n).

n^6*n^-10=

n^(6+-10)=

n^-4

Apply the exponent rule a^(-m)=1/a^m.

n^-4=1/n^4

Nov 4, 2015

1/n^4

Explanation:

n^6*(n^(-2*5))=n^6*n^(-10)=n^(6+(-10))=n^(-4)=1/n^4