How do you simplify sin (2 * arcsin (x))sin(2arcsin(x))?

2 Answers
Nov 8, 2016

The answer is =2xsqrt(1-x^2) =2x1x2

Explanation:

Let y=arcsinxy=arcsinx, then x=sinyx=siny

sin(2arcsinx)=sin2y=2sinycosysin(2arcsinx)=sin2y=2sinycosy

cos^2y+sin^2y=1cos2y+sin2y=1

cos^2y=1-x^2cos2y=1x2=>cosy=sqrt(1-x^2)cosy=1x2

:.sin(2arcsinx)=2xsqrt(1-x^2)

Jun 15, 2018

If we interpret arcsin a as all the solutions to sin x = a then

sin(2 arcsin x) = 2 (sin arcsin x)(cos arcsin x) = 2 x cos arcsin (x/1) = pm 2x sqrt{1-x^2}

Explanation:

arcsin (x/1) refers to a right triangle, opposite x, hypotenuse 1 so adjacent sqrt{1-x^2}. The sign is ambiguous so we prepend pm.