How do you simplify sin[cos^-1( - sqrt5 / 5 ) + tan^-1 ( - 1 / 3) ]sin[cos1(55)+tan1(13)]?

1 Answer
May 26, 2016

=+-0.7 sqrt 2 and +-1/sqrt 2=+-0.98995 and +-0.70711=±0.72and±12=±0.98995and±0.70711, nearly.

Explanation:

Let a = cos^(-1)(-sqrt 5/5)a=cos1(55). Then cos a = -sqrt 5/5=-1/sqrt 5<0cosa=55=15<0. so, a is in the 2nd quadrant or in the 4th. Accordingly, sin a = +-2/sqrt 5sina=±25.

Let b = tan^(-1)(-1/3)b=tan1(13). Then tan b = -1/3<0tanb=13<0. So, b is in the 2nd quadrant or in the 4th. Accordingly, sin b = +-1/sqrt 10 and cos b = 3/sqrt 10sinb=±110andcosb=310. Also, sin b and cos b have opposite signs.

Now, the given expression is

sin ( a + b ) = sin a cos b + cos a sin b

=(+-2/sqrt 5)(+-3/sqrt 10)-(-1/sqrt 5)(+-1/sqrt 10)=(±25)(±310)(15)(±110)

=+-6/sqrt 50=±650 - or + 1/sqrt 50150

=(sqrt 2/10)(+-6+-1)=(210)(±6±1)

=+-0.7 sqrt 2 and +-1/ sqrt 2=±0.72and±12

In each case, the angles a and b can be obtained separately. .