How do you simplify sin ( sin^ -1 (-3/5) + tan^ -1(5/12)) ?

1 Answer
Oct 17, 2016

sin(sin^(-1)(-3/5)+tan^(-1)(5/12))=-16/65

Explanation:

Let sin^(-1)(-3/5)=alpha and tan^(-1)(5/12)=beta

then sinalpha=-3/5 and tanbeta=5/12

and cosalpha=sqrt(1-(-3/5)^2)=sqrt(1-9/25)=sqrt(16/25)=4/5

cosbeta=1/(sqrt(1+tan^2beta))=1/(sqrt(1+(5/12)^2))=1/(sqrt(1+25/144))=1/(sqrt(169/144))=1/(13/12)=12/13

and sinbeta=tanbetaxxcosbeta=5/12xx1/13=5/13

Hene, sin(sin^(-1)(-3/5)+tan^(-1)(5/12))=sin(alpha+beta)

= sinalphacosbeta+cosalphasinbeta

= (-3/5)xx12/13+4/5xx5/13

= -36/65+20/65=-16/65