How do you simplify #sin ( sin^ -1 (-3/5) + tan^ -1(5/12)) #?

1 Answer
Oct 17, 2016

#sin(sin^(-1)(-3/5)+tan^(-1)(5/12))=-16/65#

Explanation:

Let #sin^(-1)(-3/5)=alpha# and #tan^(-1)(5/12)=beta#

then #sinalpha=-3/5# and #tanbeta=5/12#

and #cosalpha=sqrt(1-(-3/5)^2)=sqrt(1-9/25)=sqrt(16/25)=4/5#

#cosbeta=1/(sqrt(1+tan^2beta))=1/(sqrt(1+(5/12)^2))=1/(sqrt(1+25/144))=1/(sqrt(169/144))=1/(13/12)=12/13#

and #sinbeta=tanbetaxxcosbeta=5/12xx1/13=5/13#

Hene, #sin(sin^(-1)(-3/5)+tan^(-1)(5/12))=sin(alpha+beta)#

= #sinalphacosbeta+cosalphasinbeta#

= #(-3/5)xx12/13+4/5xx5/13#

= #-36/65+20/65=-16/65#