How do you simplify #sin(x + (3π)/2) cos x#?

2 Answers
Sep 10, 2016

#-cos^2x#

Explanation:

#sin(pi+(pi/2+x))cosx#
knowing that #sin(pi+alpha)=-sin(alpha)#
#=-sin(pi/2+x)cosx#
knowing that #sin(pi/2+alpha)=cos(alpha)#
#=-cosxcosx#
#=-cos^2x#

Sep 10, 2016

#-cos^2x#

Explanation:

Expand #sin(x+(3pi)/2)" using "color(blue)"addition formula"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin(A+B)=sinAcosB+cosAsinB)color(white)(a/a)|)))#

#rArrsin(x+(3pi)/2)=sinxcos((3pi)/2)+cosxsin((3pi)/2)#

#color(orange)"Reminder"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(cos((3pi)/2)=0" and " sin((3pi)/2)=-1)color(white)(a/a)|)))#

#rArrsinxcos((3pi)/2)+cosxsin((3pi)/2)#

#=0-cosx=-cosx#

#rArrsin(x+(3pi)/2)cosx=-cosx(cosx)=-cos^2x#