How do you simplify #sin2x + cosx = 0# using the double angle identity?

1 Answer
Apr 26, 2018

General solution is #x=(2n+1)pi/2# or #x=npi+-(-1)^n(-pi/6)#, where #n# is an integer.
In the interval #[0,2pi)#, #x in{pi/2,(7pi)/6,(3p)/2,(11pi)/6}#

Explanation:

As #sin2x=2sinxcosx#, we can write #sin2x+cosx=0# as

#2sinxcosx+cosx=0#

or #cosx(2sinx+1)=0#

Hence either #cosx=0# or #2sinx+1=0# i.e. #sinx=-1/2#

If #cosx=0#, #x=(2n+1)pi/2#, where #n# is an integer

and if #sinx=-1/2=sin(-pi/6)#, #x=npi+-(-1)^n(-pi/6)#

in the interval #[0,2pi)#,

#x in{pi/2,(7pi)/6,(3p)/2,(11pi)/6}#