How do you simplify sin4theta-cot2theta to trigonometric functions of a unit theta? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Jun 23, 2016 sin4theta-cot2theta = 4sinthetacos^3theta-4sin^3thetacostheta-1/2(cottheta-tantheta) Explanation: we use sin2A=2sinAcosA and cos2A=cos^2A-sin^2A Hence sin4theta-cot2theta=2sin2thetacos2theta-(cos2theta)/(sin2theta) = 4sinthetacostheta(cos^2theta-sin^2theta)-(cos^2theta-sin^2theta)/(2sinthetacostheta) = 4sinthetacos^3theta-4sin^3thetacostheta-(costheta)/(2sintheta)+(sintheta)/(2costheta) = 4sinthetacos^3theta-4sin^3thetacostheta-1/2(cottheta-tantheta) Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos x for the interval [0,2pi]? How do you find all solutions for 4sinthetacostheta=sqrt(3) for the interval [0,2pi]? How do you simplify cosx(2sinx + cosx)-sin^2x? If tan x = 0.3, then how do you find tan 2x? If sin x= 5/3, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1? See all questions in Double Angle Identities Impact of this question 1520 views around the world You can reuse this answer Creative Commons License