How do you simplify sin4theta-cot2theta to trigonometric functions of a unit theta?

1 Answer
Jun 23, 2016

sin4theta-cot2theta

= 4sinthetacos^3theta-4sin^3thetacostheta-1/2(cottheta-tantheta)

Explanation:

we use sin2A=2sinAcosA and cos2A=cos^2A-sin^2A

Hence sin4theta-cot2theta=2sin2thetacos2theta-(cos2theta)/(sin2theta)

= 4sinthetacostheta(cos^2theta-sin^2theta)-(cos^2theta-sin^2theta)/(2sinthetacostheta)

= 4sinthetacos^3theta-4sin^3thetacostheta-(costheta)/(2sintheta)+(sintheta)/(2costheta)

= 4sinthetacos^3theta-4sin^3thetacostheta-1/2(cottheta-tantheta)