How do you simplify sin8θtan2θ to trigonometric functions of a unit θ?

1 Answer
Jul 30, 2018

8sinθcosθ(cos2θsin2θ)
(18cos2θsin2θ)
2tanθ1tan2θ

Explanation:

Using De Moivre and Binomial theorems,

equate imaginary parts in

(cos8θ+isin8θ)=(cosθ+isinθ)8

=(real)C8+i(real)S8 and get

sin8θ=S8

=8C1(cos7θsinθcosθsin7θ)

8C3(cos5θsin3θcos3θsin5θ)

=8sinθcosθ(cos6θsin6θ

7cos2θsin2θ(cos2θsin2θ)) .

=8sinθcosθ(cos2θsin2θ)

(18cos2θsin2θ)

I have used nCr=nCnr,cos2θ+sin2θ=1 and

a3b3=(ab)(a2+ab+b2), for this simplification.

Also tan2θ=2tanθ1tan2θ.

And so,

sin8θtan2θ

=8sinθcosθ(cos2θsin2θ)

(18cos2θsin2θ)

2tanθ1tan2θ

Verification is done, with θ=π8.