How do you simplify #(sinx/(1-cosx))+((1-cosx)/sinx)#?
2 Answers
Explanation:
Multiply the first term by
Group terms with common denominators
Expand
Apply the identity
Factor out
Cancel common terms from the numerator and denominator
Apply the definition of the cosecant function (
Explanation:
Write with a common denominator
#(sin^2x + (1 - cosx)^2)/(sinx(1 - cosx)) #
#=( sin^2x + 1 - 2cosx + cos^2x)/(sinx(1- cosx))#
#=( sin^2x + cos^2x + 1 - 2cosx)/(sinx(1-cosx))# [using the identity :
#sin^2x + cos^2x = 1] # then becomes :
#( (1 + 1 - 2cosx))/(sinx(1-cosx))#
#= (2(1 - cosx))/(sinx(1-cosx))#
#=( 2cancel(1-cosx))/(sinxcancel(1-cosx)) = 2/sinx #