How do you simplify sqrt22/(sqrt11-sqrt66)?

1 Answer
Nov 1, 2015

Use sqrt(ab) = sqrt(a)sqrt(b) to find:

sqrt(22)/(sqrt(11)-sqrt(66))=-sqrt(2)/5-(2sqrt(3))/5

Explanation:

If a, b >= 0 then sqrt(ab) = sqrt(a)sqrt(b)

So:

sqrt(22)/(sqrt(11)-sqrt(66))

=(sqrt(11)sqrt(2))/(sqrt(11)-sqrt(11)sqrt(6))

=sqrt(2)/(1-sqrt(6))

=(sqrt(2)(1+sqrt(6)))/((1-sqrt(6))(1+sqrt(6)))

=(sqrt(2)+sqrt(2)^2sqrt(3))/(1-6)

=(sqrt(2)+2sqrt(3))/(-5)

=-sqrt(2)/5-(2sqrt(3))/5