How do you simplify #sqrt84 * sqrt28#?
1 Answer
Apr 30, 2016
#sqrt(84)*sqrt(28)=sqrt(28^2*3)=28sqrt(3)#
Explanation:
Here's a factor tree for
#color(white)(0000)28#
#color(white)(000)"/"color(white)(00)"\"#
#color(white)(00)2color(white)(000)14#
#color(white)(00000)"/"color(white)(00)"\"#
#color(white)(0000)2color(white)(0000)7#
So:
Here's a factor tree for
#color(white)(0000)84#
#color(white)(000)"/"color(white)(00)"\"#
#color(white)(00)2color(white)(000)42#
#color(white)(00000)"/"color(white)(00)"\"#
#color(white)(0000)2color(white)(000)21#
#color(white)(0000000)"/"color(white)(00)"\"#
#color(white)(000000)3color(white)(0000)7#
So:
So:
#sqrt(84)*sqrt(28)=sqrt(84*28)=sqrt(28^2*3)=28sqrt(3)#