How do you simplify tan(x+y)tan(x+y) to trigonometric functions of x and y?
1 Answer
Explanation:
This can be expanded through the tangent angle addition formula:
tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)tan(α+β)=tanα+tanβ1−tanαtanβ
Thus,
tan(x+y)=(tanx+tany)/(1-tanxtany)tan(x+y)=tanx+tany1−tanxtany
The tangent addition formula can be found using the sine and cosine angle addition formulas.
sin(alpha+beta)=sinalphacosbeta+cosalphasinbetasin(α+β)=sinαcosβ+cosαsinβ
cos(alpha+beta)=cosalphacosbeta-sinalphasinbetacos(α+β)=cosαcosβ−sinαsinβ
Since
tan(alpha+beta)=sin(alpha+beta)/cos(alpha+beta)=(sinalphacosbeta+cosalphasinbeta)/(cosalphacosbeta-sinalphasinbeta)tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβ−sinαsinβ
This can be written in terms of tangent by dividing both the numerator and denominator by
tan(alpha+beta)=((sinalphacosbeta+cosalphasinbeta)/(cosalphacosbeta))/((cosalphacosbeta-sinalphasinbeta)/(cosalphacosbeta))=(sinalpha/cosalpha(cosbeta/cosbeta)+sinbeta/cosbeta(cosalpha/cosalpha))/(cosalpha/cosalpha(cosbeta/cosbeta)-sinalpha/cosalpha(sinbeta/cosbeta))tan(α+β)=sinαcosβ+cosαsinβcosαcosβcosαcosβ−sinαsinβcosαcosβ=sinαcosα(cosβcosβ)+sinβcosβ(cosαcosα)cosαcosα(cosβcosβ)−sinαcosα(sinβcosβ)
Final round of simplification yields:
tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)tan(α+β)=tanα+tanβ1−tanαtanβ