How do you simplify tan4theta to trigonometric functions of a unit theta?

1 Answer
Sep 26, 2016

tan4theta=(4tantheta-4tan^3theta)/(1-6tan^2theta+tan^4theta)

Explanation:

Using the identity tan2theta=(2tantheta)/(1-tan^2theta)

tan4theta=(2tan2theta)/(1-tan^2(2theta)

= (2xx(2tantheta)/(1-tan^2theta))/(1-((2tantheta)/(1-tan^2theta))^2

= (2xx(2tantheta)/(1-tan^2theta))/(((1-tan^2theta)^2-4tan^2theta)/((1-tan^2theta))^2

= (4tantheta)/(1-tan^2theta)xx(1-tan^2theta)^2/((1-tan^2theta)^2-4tan^2theta)

= (4tantheta(1-tan^2theta))/((1+tan^4theta-2tan^2theta-4tan^2theta)

= (4tantheta-4tan^3theta)/(1-6tan^2theta+tan^4theta)