How do you simplify the expression (4m^4)/(-6m^-2n^5)*(3n^-1)/m^-2 using the properties?

1 Answer
Nov 9, 2017

=-(2m^8)/(n^6)

Explanation:

Some of the laws of indices state:

x^m xx x^n = x^(m+n)

x^-m = 1/x^m" "and" "1/x^-m = x^m

This means that negative indices can be changed to positive indices.

(4m^4)/(-6m^-2n^5) xx (3n^-1)/(m^-2)

= (4m^4m^2)/(-6n^5) xx (3m^2)/(n)" "larrall positive indices

= (cancel4^2m^4m^2)/(-cancel6^cancel2n^5) xx (cancel3m^2)/(n)

=-(2m^8)/(n^6)