Suppose that, arc tan 2x=alpha, and, arc cos x=betaarctan2x=α,and,arccosx=β
rArr tan alpha=2x, and, cos beta=x⇒tanα=2x,and,cosβ=x.
For the sake of brevity, we assume that 0<=x<=10≤x≤1, so that,
0<= alpha, beta <=pi/2 rArr "all Trigo. Ratios are" >00≤α,β≤π2⇒all Trigo. Ratios are>0.
Now, reqd. value =sin (alpha-beta)=sin(α−β)
=sin alphacos beta- cos alphasin beta...........(star)
tan alpha=2x rArr sec^2 alpha=tan^2 alpha+1=4x^2+1
rArr cos alpha=1/(+sqrt(4x^2+1)).....(1).
tan alpha=2x rArr sin alpha/cos alpha=2x
rArr sin alpha=2xcos alpha=(+2x)/sqrt(4x^2+1)..........(2)
Also, cos beta=x rArr sin beta=+sqrt(1-x^2)..........(3)
Using (1)-(3) in (star), bearing in mind that cos beta=x,
"The Reqd. Value"=(2x^2)/sqrt(4x^2+1)-sqrt(1-x^2)/sqrt(4x^2+1)
=(2x^2-sqrt(1-x^2))/sqrt(4x^2+1).
Enjoy Maths.!