How do you simplify (x^-1y^-2z^3)^-2 (x^2y^-4z^6)(x1y2z3)2(x2y4z6)?

1 Answer
Mar 15, 2016

Use the following three properties:

(x*y*z*...)^a=x^a*y^a*z^a*...

(x^a)^b=x^(a*b)

x^a*x^b=x^(a+b)

Answer is:

x^4y^0z^0

Explanation:

(x^-1y^-2z^3)^-2(x^2y^-4z^6)

  • Use (x*y*z*...)^a=x^a*y^a*z^a*...

(x^-1)^-2(y^-2)^-2(z^3)^-2x^2y^-4z^6

  • Use (x^a)^b=x^(a*b)

x^(-1*(-2))y^(-2*(-2))z^(3*(-2))x^2y^-4z^6

x^2y^4z^-6x^2y^-4z^6

  • Use x^a*x^b=x^(a+b)

x^(2+2)y^(4+(-4))z^(-6+6)

x^4y^0z^0

Note: don't say that y^0=1 and z^0=1 because that is not true for y=0 and z=0

If you wish you can use x^-a=1/x^a but it's easier without it.