How do you sketch one cycle of y=sec(2x)y=sec(2x)?

1 Answer
Dec 30, 2016

Graph data: Period : pi; x in[-pi/2, pi/2]. y in [-pi/2, pi/2]π;x[π2,π2].y[π2,π2];
the asymptotes in this single period: uarr x=+-pi/4 darr⏐ ⏐x=±π4⏐ ⏐.

Explanation:

|y|=|sec(2x)|>=1|y|=|sec(2x)|1

Period is (2pi)/2=pi=3.14162π2=π=3.1416, nearly,

y to +-ooy±, as x to (2k+1)pi/2, k = 0, +-1, +-2, +-3, ...The

graph{(y-1/cos(2x))=0 [-1.57, 1.57, -1.57, 1.57]}