How do you solve ((2, 0, 0), (-1, 2, 0), (-2, 4, 1))x=((4), (10), (11))?
2 Answers
x = ((2), (6), (-9))
Explanation:
First construct the inverse matrix of
((2, 0, 0, |, 1, 0, 0), (-1, 2, 0, |, 0, 1, 0), (-2, 4, 1, |, 0, 0, 1))
Add row
((2, 0, 0, |, 1, 0, 0), (-1, 2, 0, |, 0, 1, 0), (0, 4, 1, |, 1, 0, 1))
Divide row
((1, 0, 0, |, 1/2, 0, 0), (-1, 2, 0, |, 0, 1, 0), (0, 4, 1, |, 1, 0, 1))
Add row
((1, 0, 0, |, 1/2, 0, 0), (0, 2, 0, |, 1/2, 1, 0), (0, 4, 1, |, 1, 0, 1))
Subtract
((1, 0, 0, |, 1/2, 0, 0), (0, 2, 0, |, 1/2, 1, 0), (0, 0, 1, |, 0, -2, 1))
Divide row
((1, 0, 0, |, 1/2, 0, 0), (0, 1, 0, |, 1/4, 1/2, 0), (0, 0, 1, |, 0, -2, 1))
So:
((2, 0, 0), (-1, 2, 0), (-2, 4, 1))^(-1) = ((1/2, 0, 0), (1/4, 1/2, 0), (0, -2, 1))
Then multiply the right hand side column matrix by our inverse matrix to find:
x = ((1/2, 0, 0), (1/4, 1/2, 0), (0, -2, 1))((4),(10),(11)) = ((2), (6), (-9))
x = ((2), (6), (-9))
Explanation:
Alternatively, don't bother to construct an inverse matrix: Just perform a similar sequence of steps with the target column matrix appended to our original matrix as follows:
((2, 0, 0, |, 4 ), (-1, 2, 0, |, 10), (-2, 4, 1, |, 11))
Add row
((2, 0, 0, |, 4 ), (-1, 2, 0, |, 10), (0, 4, 1, |, 15))
Divide row
((1, 0, 0, |, 2 ), (-1, 2, 0, |, 10), (0, 4, 1, |, 15))
Add row
((1, 0, 0, |, 2 ), (0, 2, 0, |, 12), (0, 4, 1, |, 15))
Subtract
((1, 0, 0, |, 2 ), (0, 2, 0, |, 12), (0, 0, 1, |, -9))
Divide row
((1, 0, 0, |, 2 ), (0, 1, 0, |, 6), (0, 0, 1, |, -9))
Having reached the identity matrix on the left hand side, we can read off the solution from the right hand side:
x = ((2), (6), (-9))