How do you solve ((2, 0, 0), (-1, 2, 0), (-2, 4, 1))x=((4), (10), (11))?

2 Answers
Mar 23, 2016

x = ((2), (6), (-9))

Explanation:

First construct the inverse matrix of ((2, 0, 0), (-1, 2, 0), (-2, 4, 1)) by writing the identity matrix alongside it and transforming that as we transform the original matrix into the identity:

((2, 0, 0, |, 1, 0, 0), (-1, 2, 0, |, 0, 1, 0), (-2, 4, 1, |, 0, 0, 1))

Add row 1 to row 3:

((2, 0, 0, |, 1, 0, 0), (-1, 2, 0, |, 0, 1, 0), (0, 4, 1, |, 1, 0, 1))

Divide row 1 by 2:

((1, 0, 0, |, 1/2, 0, 0), (-1, 2, 0, |, 0, 1, 0), (0, 4, 1, |, 1, 0, 1))

Add row 1 to row 2:

((1, 0, 0, |, 1/2, 0, 0), (0, 2, 0, |, 1/2, 1, 0), (0, 4, 1, |, 1, 0, 1))

Subtract 2 xx row 2 from row 3:

((1, 0, 0, |, 1/2, 0, 0), (0, 2, 0, |, 1/2, 1, 0), (0, 0, 1, |, 0, -2, 1))

Divide row 2 by 2:

((1, 0, 0, |, 1/2, 0, 0), (0, 1, 0, |, 1/4, 1/2, 0), (0, 0, 1, |, 0, -2, 1))

So:

((2, 0, 0), (-1, 2, 0), (-2, 4, 1))^(-1) = ((1/2, 0, 0), (1/4, 1/2, 0), (0, -2, 1))

Then multiply the right hand side column matrix by our inverse matrix to find:

x = ((1/2, 0, 0), (1/4, 1/2, 0), (0, -2, 1))((4),(10),(11)) = ((2), (6), (-9))

Mar 23, 2016

x = ((2), (6), (-9))

Explanation:

Alternatively, don't bother to construct an inverse matrix: Just perform a similar sequence of steps with the target column matrix appended to our original matrix as follows:

((2, 0, 0, |, 4 ), (-1, 2, 0, |, 10), (-2, 4, 1, |, 11))

Add row 1 to row 3:

((2, 0, 0, |, 4 ), (-1, 2, 0, |, 10), (0, 4, 1, |, 15))

Divide row 1 by 2:

((1, 0, 0, |, 2 ), (-1, 2, 0, |, 10), (0, 4, 1, |, 15))

Add row 1 to row 2:

((1, 0, 0, |, 2 ), (0, 2, 0, |, 12), (0, 4, 1, |, 15))

Subtract 2 xx row 2 from row 3:

((1, 0, 0, |, 2 ), (0, 2, 0, |, 12), (0, 0, 1, |, -9))

Divide row 2 by 2:

((1, 0, 0, |, 2 ), (0, 1, 0, |, 6), (0, 0, 1, |, -9))

Having reached the identity matrix on the left hand side, we can read off the solution from the right hand side:

x = ((2), (6), (-9))