How do you solve 2/(x-2) + 7/(x^2-4) = 5/x2x2+7x24=5x?

1 Answer
May 23, 2016

x= 5" and " -4/3x=5 and 43

Explanation:

Known: a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b)

So x^2-4->x^2-2^2 -> (x-2)(x+2)x24x222(x2)(x+2)

Write the given equation as:

2/(x-2)+7/[(x-2)(x+2)]=5/x2x2+7(x2)(x+2)=5x

=>[2(x+2)+7]/[(x-2)(x+2)]=5/x2(x+2)+7(x2)(x+2)=5x

=>[2x+4+7]/[(x-2)(x+2)]=5/x2x+4+7(x2)(x+2)=5x

Cross multiplying

x(2x+11)=5(x-2)(x+2)x(2x+11)=5(x2)(x+2)

x(2x+11)=5(x^2-4)x(2x+11)=5(x24)

2x^2+11x=5x^2-202x2+11x=5x220

3x^2-11x-20=03x211x20=0

not all the solutions are whole numbers

Using: y=ax^2+bx+cy=ax2+bx+c where a=3; b= -11; c=-20

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

=>x=(11+-sqrt(11^2-4(3)(-20)))/(2(3))x=11±1124(3)(20)2(3)

x=(11+-sqrt(121+240))/6x=11±121+2406

x= (11+-19)/6x=11±196

x= 5" and " -4/3x=5 and 43