Known: a^2-b^2=(a-b)(a+b)a2−b2=(a−b)(a+b)
So x^2-4->x^2-2^2 -> (x-2)(x+2)x2−4→x2−22→(x−2)(x+2)
Write the given equation as:
2/(x-2)+7/[(x-2)(x+2)]=5/x2x−2+7(x−2)(x+2)=5x
=>[2(x+2)+7]/[(x-2)(x+2)]=5/x⇒2(x+2)+7(x−2)(x+2)=5x
=>[2x+4+7]/[(x-2)(x+2)]=5/x⇒2x+4+7(x−2)(x+2)=5x
Cross multiplying
x(2x+11)=5(x-2)(x+2)x(2x+11)=5(x−2)(x+2)
x(2x+11)=5(x^2-4)x(2x+11)=5(x2−4)
2x^2+11x=5x^2-202x2+11x=5x2−20
3x^2-11x-20=03x2−11x−20=0
not all the solutions are whole numbers
Using: y=ax^2+bx+cy=ax2+bx+c where a=3; b= -11; c=-20
x=(-b+-sqrt(b^2-4ac))/(2a)x=−b±√b2−4ac2a
=>x=(11+-sqrt(11^2-4(3)(-20)))/(2(3))⇒x=11±√112−4(3)(−20)2(3)
x=(11+-sqrt(121+240))/6x=11±√121+2406
x= (11+-19)/6x=11±196
x= 5" and " -4/3x=5 and −43