How do you solve 2ix - 5 + 3i = (2 - i)x + i?

1 Answer
Dec 5, 2015

x=((-16-11i))/(5)

Explanation:

Given: 2ix-5+3i=(2-i)x+i

Multiply out the brackets

2ix-5+3i=2x-ix+i

Collecting like terms

(2ix+ix)+(3i-i)-2x-5=0

x(3i)+2i-2x-5=0

x(-2+3i)+(-5+2i)=0

x=((5-2i))/((-2+3i))......................(1)

Using (a^2-b^2)=(a-b)(a+b)
Multiply equation (1) by 1 in the form of ((-2-3i))/((-2-3i))

x=((5-2i)(-2-3i))/((-2+3i)(-2-3i)) color(white)(..)=color(white)(..)(-16-11i)/(5)