How do you solve 2q2q+32q2q3=1?

1 Answer
Nov 27, 2016

We should find a common denominator of (2q+3)(2q3).

2q(2q3)(2q+3)(2q3)2q(2q+3)(2q+3)(2q3)=(2q+3)(2q3)(2q+3)(2q3)

Combining:

2q(2q3)2q(2q+3)4q29=4q294q29

Multiplying through and disregarding the denominator since they're all equal:

(4q26q)(4q2+6q)=4q29

Pay attention to positives and negatives here:

12q=4q29

4q2+12q9=0

Using the Quadratic Formula:

q=b±b24ac2a=12±144+1448

q=12±1228=3±324