How do you solve 2q2q+3−2q2q−3=1?
1 Answer
We should find a common denominator of
2q(2q−3)(2q+3)(2q−3)−2q(2q+3)(2q+3)(2q−3)=(2q+3)(2q−3)(2q+3)(2q−3)
Combining:
2q(2q−3)−2q(2q+3)4q2−9=4q2−94q2−9
Multiplying through and disregarding the denominator since they're all equal:
(4q2−6q)−(4q2+6q)=4q2−9
Pay attention to positives and negatives here:
−12q=4q2−9
4q2+12q−9=0
Using the Quadratic Formula:
q=−b±√b2−4ac2a=−12±√144+1448
q=−12±12√28=−3±3√24