How do you solve 2x - 5y = 122x5y=12 and x - 3y = -3x3y=3 using matrices?

1 Answer

You could write the equations as matrices and apply standard row operations as if they were normal linear equations
or you could use Cramer's Rule

Explanation:

{: (color(red)(2)x,color(blue)(-5)y," = ",color(green)(12)), (color(red)(1)x,color(blue)(-3)y," = ",color(green)(-3)) :}hArr ((color(red)(2),color(blue)(-5),color(green)12),(color(red)(1),color(blue)(-3),color(green)(-3)))

Defining the determinants:
D=|(color(red)(2),color(blue)(-5)),(color(red)(1),color(blue)(-3))| color(white)("XX") Dx=|(color(green)(12),color(blue)(-5)),(color(green)(-3),color(blue)(-3))| color(white)("XX") Dy=|(color(red)(2),color(green)(12)),(color(red)(1),color(green)(-3))|

Cramer's Rule tells us that
color(white)("XXX")x=(D_x)/Dcolor(white)("XXX")y=(D_y)/D

D=(color(red)2xx(color(blue)(-3)))-(color(red)(1)xx(color(blue)(-5)))= -1

D_x=(color(green)(12)xxcolor(blue)((-3)))-((color(green)(-3))xx(color(blue)(-5))) = -51

D_y=((color(red)(2)xx(color(green)(-3)))-(color(red)(1xxcolor(green)(12))) = -18

Therefore
color(white)("XXX")x=51 and y=18