How do you solve ((-3, -2), (1, 1))X=((-8, -1),(6,0))?

1 Answer
May 30, 2016

color(green)(=>X = ((-4,+1),(+10,-1)))

Explanation:

Deliberately not using the shortcut method of using the determinant.

Write as AX=B

Then A^(-1) AX=A^(-1)B

But A^(-1)A=I

=> X=A^(-1)B

color(red)("Note that the order of the matrices is important")
color(magenta)(A^(-1) A!=A A^(-1))

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine "A^(-1))

((-3,-2" |" 1,0),(" "1, 1 color(white)(..)" |"0,1))
'...............................................

Row( 1) + 3Row(2)

((0,1" |" 1,3),(1, 1 " |"0,1))
'....................................................

Row(2)-Row(1)

((0,color(white)(...)1" |"color(white)(..) 1,3),(1,color(white)(..) 0 " |"-1,-2))
'................................................

Reverse the order of the rows

((1,color(white)(..) 0 " |"-1,-2),(0,color(white)(.)1" |"color(white)(..) 1,3))
'.......................................................

color(brown)(=>A^(-1)=((-1,-2),(1,3)))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=> X = A^(-1)B

=> X = ((-1,-2),(1,3))((-8,-1),(6,0))

"Let " X = ((a,b),(c,d))

a=[(-1)xx(-8)]" "+" "[(-2)xx(6) ]= -4

b=[(-1)xx(-1)]" "+" "[(-2)xx(0)] = +1

c=[(1)xx(-8)]" "+" "[(3)xx(6)] = +10

d=[(1)xx(-1)]" "+" "[(3)xx(0)]=-1
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(green)(=>X = ((-4,+1),(+10,-1)))