Let #f(x)=3(4-x)(2x+1)#
We build a sign chart
#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaa)##-1/2##color(white)(aaaa)##4##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##2x+1##color(white)(aaaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##4-x##color(white)(aaaaaaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-#
Therefore,
#f(x)>0# when #x in ]-1/2, 4[#