4(b+6) = 2(b+5) + 24(b+6)=2(b+5)+2
To solve for the variable bb, we need to make it by itself. First, use the distributive property (shown below) to simplify 4(b+6)4(b+6) and 2(b+5)2(b+5):
cdn.virtualnerd.com
Following this image, we know that:
color(blue)(4(b+6) = (4 * b) + (4 * 6) = 4b + 24)4(b+6)=(4⋅b)+(4⋅6)=4b+24
and
color(blue)(2(b+5) = (2 * b) + (2 * 5) = 2b + 10)2(b+5)=(2⋅b)+(2⋅5)=2b+10
Put them back into the equation:
4b + 24 = 2b + 10 + 24b+24=2b+10+2
Combine 10 + 210+2:
4b + 24 = 2b + 124b+24=2b+12
Subtract color(blue)(2b)2b from both sides:
4b + 24 quadcolor(blue)(-quad2b) = 2b + 12 quadcolor(blue)(-quad2b)
2b + 24 = 12
Now subtract color(blue)24 from both sides:
2b + 24 quadcolor(blue)(-quad24) = 12 quadcolor(blue)(-quad24)
2b = -12
Divide both sides by color(blue)2:
(2b)/color(blue)2 = -12/color(blue)2
Therefore,
b = -6
Hope this helps!