How do you solve #(40/(x-2))=1+(42/(x- 2))#?

1 Answer
Jun 13, 2016

#x=0#

Explanation:

Given,

#40/(x-2)=1+42/(x-2)#

Multiply each term on the left and right sides by #x-2# to get rid of the denominators.

#color(red)((x-2))(40/(x-2))=1color(red)((x-2))+color(red)((x-2))(42/(x-2))#

Simplify.

#(color(red)cancelcolor(black)(x-2))(40/(color(red)cancelcolor(black)(x-2)))=1(x-2)+(color(red)cancelcolor(black)(x-2))(42/(color(red)cancelcolor(black)(x-2)))#

#40=x-2+42#

#40=x+40#

Subtract #40# from both sides.

#40color(white)(i)color(red)(-40)=x+40color(white)(i)color(red)(-40)#

#x=color(green)(|bar(ul(color(white)(a/a)color(black)0color(white)(a/a)|)))#