How do you solve 4x + 5y = -7 4x+5y=7 and 3x - 6y = 243x6y=24 using matrices?

1 Answer
Mar 9, 2017

The solution is ((x),(y))=((2),(-3))

Explanation:

We rewrite the equatins in matrix form

((4,5),(3,-6))((x),(y))=((-7),(24))

Let A=((4,5),(3,-6))

We need the inverse of matrix A

First, we calculate the determinant of matrix A

detA=|(4,5),(3,-6)|=-24-15=-39

As, detA!=0, the matrix A is invertible

A^-1=-1/39((-6,-5),(-3,4))

=((6/39,5/39),(3/39,-4/39))

Therefore,

((x),(y))=((6/39,5/39),(3/39,-4/39))((-7),(24))

=((-42/39+120/39),(-21/39-96/39))

=((78/39),(-117/39))

=((2),(-3))