We cannot do crossing over
So,
#8/(x-1)<1#, #=>#, #8/(x-1)-1<0#
#(8-(x-1))/(x-1)<0#
#(9-x)/(x-1)<0#
Let #f(x)=(9-x)/(x-1)#
We can do a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##1##color(white)(aaaa)##9##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaa)##+##color(white)(aaa)##+#
#color(white)(aaaa)##9-x##color(white)(aaaaa)##+##color(white)(aaa)##+##color(white)(aaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaa)##+##color(white)(aaa)##-#
Therefore,
#f(x)<0#, when #x in ] -oo,1 [ uu ] 9, +oo[#