How do you solve 8y1=x,3x=2y?

2 Answers
Nov 26, 2016

I found: x=111andy=322

Explanation:

We can trysubstituting the first equation, for x, intothe second to get:
3(8y1)=2y
Solve for y:
24y3=2y
22y=3
So: y=322
Using this value back into the first equation:
8(322)1=x
x=242222=222=111

(x,y)=(111,322)

Explanation:

We have two equations:

8y1=x
3x=2y

We can substitute in the value of x (in terms of y) from the first equation into the second, and then solve for y. Like this:

3(8y1)=2y

24y3=2y

22y=3

y=322

And then we substitute into either of the initial equations (I'll do both to show we'll get the same answer for x):

8y1=x

8(322)1(1)=x

24221(2222)=x

24222222=222=111=x

or:

3x=2y

3x=2(322)

3x=311

x=111