How do you solve a-2b+20c=1, 3a+b-4c=2 and 2a+b-8c=3 using matrices?

1 Answer
Jun 6, 2017

The solution is ((a),(b),(c))=((2),(-7),(-3/4))

Explanation:

We write the equations in matrix form

((1,-2,20),(3,1,-4),(2,1,-8))*((a),(b),(c))=((1),(2),(3))

or,

A*x=b

We must calculate A^-1 the inverse of A

To see if the matrix is invertible, we calculate the determinant

detA=|(1,-2,20),(3,1,-4),(2,1,-8)|

=1*|(1,-4),(1,-8)|+2|(3,-4),(2,-8)|+20*|(3,1),(2,1)|

=1(-4)+2(-16)+20(1)

=-4-32+20=-16

As,

detA!=0, the matrix is invertible

We calculate the matrix of co-factors

C=((|(1,-4),(1,-8)|,-|(3,-4),(2,-8)|,|(3,1),(2,1)|),(-|(-2,20),(1,-8)|,|(1,20),(2,-8)|,-|(1,-2),(2,1)|),(|(-2,20),(1,-4)|,-|(1,20),(3,-4)|,|(1,-2),(3,1)|))

=((-4,16,1),(4,-48,-5),(-12,64,7))

The transpose of C is

C_T=((-4,4,-12),(16,-48,64),(1,-5,7))

The inverse is

A^-1=(C_T)/(detA)

=-1/16((-4,4,-12),(16,-48,64),(1,-5,7))

=((1/4,-1/4,3/4),(-1,3,-4),(-1/16,5/16,-7/16))

Therefore,

((a),(b),(c))=((1/4,-1/4,3/4),(-1,3,-4),(-1/16,5/16,-7/16))*((1),(2),(3))

=((1/4-2/4+9/4),(-1+6-12),(-1/16+10/16-21/16))

=((2),(-7),(-3/4))