First, expand the terms on each side of the inequality by multiplying each term within the parenthesis by the term outside the parenthesis:
#color(red)(-5)(13x + 3) < color(blue)(-2)(13x - 3)#
#(color(red)(-5) xx 13x) + (color(red)(-5) xx 3) < (color(blue)(-2) xx 13x) - (color(blue)(-2) xx 3)#
#-65x + (-15) < -26x - (-6)#
#-65x - 15 < -26x + 6#
Next, add #color(red)(65x)# and subtract #color(blue)(6)# from each side of the inequality to isolate the #x# term while keeping the inequality balanced:
#color(red)(65x) - 65x - 15 - color(blue)(6) < color(red)(65x) - 26x + 6 -
color(blue)(6)#
#0 - 21 < (color(red)(65) - 26)x + 0#
#-21 < 39x#
Now, divide each side of the inequality by #color(red)(39)# to solve for #x# while keeping the inequality balanced:
#-21/color(red)(39) < (39x)/color(red)(39)#
#-(3 xx 7)/color(red)(3 xx 13) < (color(red)(cancel(color(black)(39)))x)/cancel(color(red)(39))#
#-(color(red)(cancel(color(black)(3))) xx 7)/color(red)(color(black)(cancel(color(red)(3))) xx 13) < x#
#-7/13 < x#
To state the solution in terms of #x# we can reverse or "flip" the entire inequality:
#x > -7/13#