How do you solve and write the following in interval notation: x^2-1x-30>0?

1 Answer
Apr 14, 2017

Solution : x <-5 or x >6 . In interval notation: (-oo , -5) uu (6,oo).

Explanation:

x^2-x-30 >0 or x^2-6x+5x-30 >0 or x(x-6) +5(x-6) >0 or (x+5)(x-6)>0
Critical points are x = -5 , x =6

When x < -5; (x+5)(x-6) is (-)*(-) = (+) or >0

When -5< x < 6; (x+5)(x-6) is (+)*(-) = (-) or <0

When x > 6; (x+5)(x-6) is (+)*(+) = (+) or >0

Solution : x <-5 or x >6 . In interval notation: (-oo , -5) uu (6,oo). The graph also confirms the findings. graph{x^2-x-30 [-80, 80, -40, 40]}[Ans]