We cannot do crossing over
Factorise the inequality
#(x^2-5x+6)/(x+3)>0#
#((x-2)(x-3))/(x+3)>0#
Let #f(x)=((x-2)(x-3))/(x+3)#
Build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-3##color(white)(aaaa)##2##color(white)(aaaaa)##3##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##x+3##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-3##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)>0# when #x in (-3,2) uu (3,+oo)#
graph{(x^2-5x+6)/(x+3) [-148.4, 152, -74.4, 76]}
graph{(x^2-5x+6)/(x+3) [-0.486, 4.993, -1.132, 1.61]}