How do you solve by substitution y=3xy=3x and x+y=-5x+y=5?

2 Answers
May 6, 2018

x=-1.25x=1.25 and y=-3.75y=3.75

Explanation:

Using y=3xy=3x substitute this value of yy into x+y=-5x+y=5:

x+y=-5x+y=5

x+3x=-5x+3x=5

Then simplify and rearrange to make xx the subject of the equation:

x+3x=-5x+3x=5

4x=-54x=5

x=-5/4x=54

x=-1.25x=1.25

Then substitute this value of xx back into y=3xy=3x so you find the value of yy (if it asks you for it):

y=3(-1.25)y=3(1.25)

y= -3.75y=3.75 or in fractions y=-15/4y=154

To double check your answer, substitute values of xx and yy into x+y=-5x+y=5 to see whether you get the result of -55:

x+y=-5x+y=5

-1.25+(-3.75)=-51.25+(3.75)=5

May 6, 2018

x=-5/4x=54
y=-15/4y=154

Explanation:

y=3xy=3x
x+y=-5x+y=5

As we see yy is equal to 3x3x in the first equation.
yy which is in the second equation must be replaced or substituted by 3x.3x.

So
y=color(red)(3x)y=3x
x+color(red)y=-5x+y=5

x+color(red)(3x)=5x+3x=5
4x=-54x=5
x=-5/4x=54

y=3x=3*(-5/4)=-15/4y=3x=3(54)=154