#cosx-3cos(x/2)=0#
#cos(x/2times2)-3cos(x/2)=0#
Double angle formula #cos2theta=cos^2theta-sin^2theta#
#cos^2(x/2)-sin^2(x/2)-3cos(x/2)=0#
Rearrange so that #cos^2theta-sin^2theta=cos^2theta-(1-cos^2theta)=cos^2theta-1+cos^2theta=2cos^2theta-1#
#2cos^2(x/2)-3cos(x/2)-1=0#
Using quadratic formula:
#x=(-b+-sqrt(b^2-4ac))/(2a)#
#cos(x/2)=(3+-sqrt(9-4(2)(-1)))/4#
#cos(x/2)=(3+-sqrt17)/4#
#x/2=cos^(-1)((3+-sqrt17)/4)#
#x/2=cos^(-1)((3-sqrt17)/4)# only
Why? Well, #(3+sqrt17)/4# is greater than 1 and since the domain of #cos^(-1)x# is #-1< x<1#, then there will be no solution
Now, if the domain was between #0 < x<360# then it would become #0< x/2<180#
#x/2=106'18'#
#x=212'37'#