How do you solve #cosxsinx=cosx# in the interval #0<=x<=2pi#?
2 Answers
Mar 12, 2018
Explanation:
#"rearrange and equate to zero"#
#cosxsinx-cosx=0#
#"take out common factor "cosx#
#cosx(sinx-1)=0#
#"equate each factor to zero and solve for x"#
#cosx=0rArrx=pi/2,(3pi)/2#
#sinx-1=0rArrsinx=1rArrx=pi/2#
#"Put the solutions together"#
#rArrx=pi/2" or "x=(3pi)/2tox in[0,2pi]#
Mar 12, 2018
Explanation:
Here,
Now,