How do you solve for x?: e2x+ex=13?

1 Answer
Oct 22, 2015

I found: ln[3(e2+1)]=ln(3)ln(e2+1)

Explanation:

Collect ex on the left:
ex(e2+1)=13 rearrange:
ex=13(e2+1)
apply the ln on both sides:
ln[ex]=ln[13(e2+1)]
so:
x=ln[13(e2+1)]
use the properties of log relating sums and subtractions to multiplications and divisions to get:
x=ln(1)ln[3(e2+1)]=0ln(3)ln(e2+1)