How do you solve for x in simplest radical form: 2(x+3)^2+10=662(x+3)2+10=66?

2 Answers
Apr 14, 2015

2(x+3)^2+10=662(x+3)2+10=66

(x+3)^2 + 5 = 33(x+3)2+5=33

x^2+6x+9+5-33=0x2+6x+9+533=0

x^2+6x-19=0x2+6x19=0

Using the quadratic root formula: (-b+-sqrt(b^2-4ac))/2ab±b24ac2a

x=(-6+-sqrt(36+76))/2x=6±36+762

x= (-6+-4sqrt(7))/2x=6±472

x=-3-2sqrt(7)x=327
or
x=-3+2sqrt(7)x=3+27

Apr 14, 2015

Alternative solution:

2(x+3)^2 +10 = 662(x+3)2+10=66

2(x+3)^2 = 66 -102(x+3)2=6610 color(white)"ss"ss added -1010 on both sides

2(x+3)^2 = 562(x+3)2=56

(x+3)^2 = 56/2(x+3)2=562color(white)"ssssssss"ssssssss multiplied 1/212 on both sides

(x+3)^2 = 28(x+3)2=28

x+3 = +- sqrt 28x+3=±28 color(white)"ssssss"ssssss there are 2 numbers whise square is 28

x = -3 +- sqrt 28x=3±28 color(white)"ss"ss added -33 on both sides

x = -3 +- sqrt(4*7) = -3 +- sqrt4 sqrt7 = -3 +- 2sqrt7x=3±47=3±47=3±27