#ln(x-1)+ln(x+2)=1#
#hArrln(x-1)(x-2)=1# or
#(x-1)(x+2)=e# or
#x^2+x-2-e=0# and using quadratic fomula #(-b+-sqrt(b^2-4ac))/(2a)#
#x=(-1+-sqrt(1^2-4xx1xx(-2-e)))/2#
= #(-1+-sqrt(1+8+4e))/2#
= #(-1+-sqrt(9+4e))/2#
= #(-1+-sqrt(9+4xx2.7183))/2#
= #(-1+-sqrt(9+10.8732))/2#
= #(-1+-sqrt(19.8732))/2#
= #(-1+-4.4579)/2#
i.e. #x=1.729# or #x=-2.729#
But #x# cannot have a negative value, hence #x=-2.729#