How do you solve ln(y^2-1)-ln(y+1)=ln(sinx)?

1 Answer
Jun 21, 2016

color{red}{\mathbf{y \ne -1}}, y -1 = sin x \implies y = sin x + 1

Explanation:

consolidate the LHS to get

ln( (y^2 -1)/(y+1) ) = ln (sin x)

(y^2 -1)/(y+1) = sin x

((y -1)(y+1))/(y+1) = sin x

color{red}{\mathbf{y \ne -1}}, y -1 = sin x \implies y = sin x + 1