How do you solve tan(arccos(22))?

2 Answers
Jul 18, 2016

Ans.=1.

Explanation:

Recall that arccosx=θ,|x|1cosθ=x,θ[o,π]

Hence, arccos(22)=π4, and, so,

tan{arccos(22)}=tan(π4)=1.

Jul 18, 2016

tan[arccos(22)]=1

Explanation:

arccos(22) returns the angle θ where we have:

Tony B

cos(θ)=adjacenthypotenuse=22
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
But we need the tangent and this means we need to know the length of the opposite (h).

h=222=2

So tan[arccos(22)]tan(θ)=h2=22=1