How do you solve tan(sin^-1x)=x/(sqrt(1-x^2)?

2 Answers
Jun 26, 2017

It is an identity, true for all values of x. Please see the proof below:

Explanation:

Given: tan(sin^-1(x)) = x/sqrt(1-x^2)

Change the tan into sin/cos

sin(sin^-1(x))/cos(sin^-1(x)) = x/sqrt(1-x^2)

The numerator becomes x by definition:

x/cos(sin^-1(x)) = x/sqrt(1-x^2)

Substitute sqrt(1-u^2) for cos(u)

x/sqrt(1 - sin^2((sin^-1(x)))) = x/sqrt(1-x^2)

sin^2(sin^-1(x)) becomes x^2:

x/sqrt(1 - x^2) = x/sqrt(1-x^2) Q.E.D.

Jun 26, 2017

Let sin^-1x= theta

so sintheta=x
and
tantheta=sintheta/costheta=sintheta/sqrt(1-sin^2theta)=x/sqrt(1-x^2)

=>tan(sin^-1x)=x/sqrt(1-x^2)