How do you solve the differential equation y'=e^(-y)(2x-4), where y5)=0 ?

1 Answer
Sep 8, 2014

This is an example of a separable equation with an initial value.
{dy}/{dx}=e^{-y}(2x-4)
y(5)=0

by multiplying by e^y and by dx,
Rightarrow e^ydy=(2x-4)dx
by integrating,
Rightarrow inte^ydy=int(2x-4)dx
Rightarrow e^y=x^2-4x+C
by taking the natural log,
Rightarrow y=ln(x^2-4x+C)

Now, we need to find C using y(5)=0.
y(5)=ln((5)^2-4(5)+C)=ln(5+C)=0
Rightarrow 5+C=1 Rightarrow C=-4

Hence, the solution is y=ln(x^2-4x-4).