How do you solve the following questions?
1 Answer
i) You should notice that
A_"shaded"= A_"rectangle" - A_"under root graph"Ashaded=Arectangle−Aunder root graph
A_"shaded" = 2 - int_0^1 sqrt(3x+ 1) dxAshaded=2−∫10√3x+1dx
The integral can be evaluated thru a simple u-substitution. Let
A_"shaded" = 2- 1/3int_1^4 sqrt(u) duAshaded=2−13∫41√udu
A_"shaded" = 2 - 1/3[2/3u^(3/2)]_1^4Ashaded=2−13[23u32]41
A_"shaded" = 2 - 1/3[2/3(4)^(3/2) - 2/3(1)^(3/2)]Ashaded=2−13[23(4)32−23(1)32]
A_"shaded" = 2 - 1/3(16/3 - 2/3)Ashaded=2−13(163−23)
A_"shaded" = 2 - 14/9Ashaded=2−149
A_"shaded" = 4/9Ashaded=49
ii) What we essentially have to do is find the volume if the area under the line
V = piint_0^1 2^2dx - pi int_0^1 (sqrt(3x + 1))^2 dxV=π∫1022dx−π∫10(√3x+1)2dx
V = pi[4x]_0^1 - pi[3/2x^2 + x]_0^1 dxV=π[4x]10−π[32x2+x]10dx
V = 4pi - pi(3/2 + 1)V=4π−π(32+1)
V = 4pi - 3/2pi - piV=4π−32π−π
V = 3/2 piV=32π
V = 0.477V=0.477
iii) I will let another contributor do this one.
Hopefully this helps!