4x+y=−1, 5x−7y=12
Take the first equation, 4x+y=−1, and isolate y: y=−4x−1. We can substitute this value into the second equation: 5x−7(−4x−1)=12. Distribute the parentheses: 5x+28x+7=12 Combine like terms, isolate x and coeffecient: 33x=5 Isolate x: x=533 Input this value into the first equation: 4(533)+y=−1 Distribute y 2033+y=−1 Isolate y y=−5533 y=−53