How do you solve the following system?: 7x+2y-z=3, 8x+3y+5z=9, 8x-8y-2z=47x+2yz=3,8x+3y+5z=9,8x8y2z=4

1 Answer
Jan 15, 2018

The solution is ((x),(y),(z))=((131/219),(-29/219),(202/219))

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix,

The last equation is first

A=((8,-8,-2,|,4),(8,3,5,|,9),(7,2,-1,|,3))

Perform the row operations

Make the first column the pivot , R1larr(R1)/8

((1,-1,-1/4,|,1/2),(8,3,5,|,9),(7,2,-1,|,3))

Eliminate the first column, R2larr(R2-8R1) and R3larr(R3-7R1)

((1,-1,-1/4,|,1/2),(0,11,7,|,5),(0,9,3/4,|,-1/2))

Make the pivot in the second column, R2larr(R2)/11

((1,-1,-1/4,|,1/2),(0,1,7/11,|,5/11),(0,9,3/4,|,-1/2))

Eliminate the second column, R3larr(R3-9R2)

((1,-1,-1/4,|,1/2),(0,1,7/11,|,5/11),(0,0,-219/44,|,-101/22))

Make the pivot in the third column, R3larr(R3xx-44/219)

((1,-1,-1/4,|,1/2),(0,1,7/11,|,5/11),(0,0,1,|,202/219))

Eliminate the third column, R2larr R2-7/11R3

((1,-1,-1/4,|,1/2),(0,1,0,|,-29/219),(0,0,1,|,202/219))

R1larr(R1+R2) and R1larrR1+1/4R3

((1,0,0,|,131/219),(0,1,0,|,-29/219),(0,0,1,|,202/219))