Using matrices and Cramer's Rule
(with a bit of practice this can be done mentally, but I will lay out the steps in detail)
Converting
color(white)("XXX")-8x-7y=7XXX−8x−7y=7
and
color(white)("XXX")5x-3y=-4XXX5x−3y=−4
into matrix form:
color(white)("XXXXX")xcolor(white)("XX")ycolor(white)("XX)cXXXXXxXXyXXc
color(white)("XXX")((-8,-7,7),(5,-3,-4))
Using the determinants
color(white)("XXX")D_c (the original matrix without the c column)
color(white)("XXXXX")=|(-8,-7),(5,-3)|=(-8) * (-3)-(-7) * (5) = 59
Similarly
color(white)("XXX")D_x=|(7,-7),(-4,-3)|=7 * (-3) - (-7) * (-4)=-49
and
color(white)("XXX")D_y=|(-8,7),(5,-4)|= (-8) * (-4) -5 * 7 = -3
By Cramer's Rule
color(white)("XXX")x=(D_x)/(D_c) = -49/59
and
color(white)("XXX")y=(D_y)/(D_c) = -3/59
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alternately: By Elimination
[1]color(white)("XXX")-8x-7y=7
[2]color(white)("XXX")5x-3y=-4
[3]=[1]xx 5color(white)("XXX")-40x-35y=35
[4]=[2]xx8color(white)("XXX")40x-24y=-32
[5]=[3]+[4]color(white)("XXX")-59y=3
[6]color(white)("XXXXXXXXX")y=-3/59
...and similarly for x