How do you solve the following system using substitution?: 5x+2y=-4, -3x+y=205x+2y=4,3x+y=20

2 Answers
May 7, 2018

(x,y)to(-4,8)(x,y)(4,8)

Explanation:

5x+2y=-4to(1)5x+2y=4(1)

-3x+y=20to(2)3x+y=20(2)

"rearrange equation "(2)" to express y in terms of x"rearrange equation (2) to express y in terms of x

"add "3x" to both sides"add 3x to both sides

rArry=20+3xto(3)y=20+3x(3)

color(blue)"substitute "y=20+3x" into equation "(1)substitute y=20+3x into equation (1)

5x+2(20+3x)=-4larr"distribute"5x+2(20+3x)=4distribute

rArr5x+40+6x=-45x+40+6x=4

rArr11x+40=-411x+40=4

"subtract 40 from both sides"subtract 40 from both sides

rArr11x=-4411x=44

"divide both sides by 11"divide both sides by 11

rArrx=(-44)/11=-4x=4411=4

"substitute "x=-4" into equation "(3)substitute x=4 into equation (3)

rArry=20-12=8y=2012=8

"the point of intersection "=(-4,8)the point of intersection =(4,8)

May 7, 2018

The solutions are {x=-4 ; y=8}{x=4;y=8}

Explanation:

The equations are

{(5x+2y=-4),(-3x+y=20):}

<=>, {(5x+2y=-4),(y=3x+20):}

<=>, {(5x+2(3x+20)=-4),(y=3x+20):}

<=>, {(11x+40=-4),(y=3x+20):}

<=>, {(11x=-44),(y=3x+20):}

<=>, {(x=-4),(y=3xx-4+20=8):}